non-abelian, soluble, monomial
Aliases: C42⋊D15, C5⋊(C42⋊S3), (C4×C20)⋊1S3, C42⋊C3⋊2D5, C22.(C5⋊S4), (C2×C10).2S4, (C5×C42⋊C3)⋊4C2, SmallGroup(480,258)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C42 — C5×C42⋊C3 — C42⋊D15 |
C1 — C22 — C42 — C4×C20 — C5×C42⋊C3 — C42⋊D15 |
C5×C42⋊C3 — C42⋊D15 |
Generators and relations for C42⋊D15
G = < a,b,c,d | a4=b4=c15=d2=1, ab=ba, cac-1=dbd=a-1b-1, ad=da, cbc-1=a, dcd=c-1 >
Character table of C42⋊D15
class | 1 | 2A | 2B | 3 | 4A | 4B | 4C | 4D | 5A | 5B | 8A | 8B | 10A | 10B | 15A | 15B | 15C | 15D | 20A | 20B | 20C | 20D | 20E | 20F | 20G | 20H | |
size | 1 | 3 | 60 | 32 | 3 | 3 | 6 | 60 | 2 | 2 | 60 | 60 | 6 | 6 | 32 | 32 | 32 | 32 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 2 | 2 | 0 | -1 | 2 | 2 | 2 | 0 | 2 | 2 | 0 | 0 | 2 | 2 | -1 | -1 | -1 | -1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | orthogonal lifted from S3 |
ρ4 | 2 | 2 | 0 | 2 | 2 | 2 | 2 | 0 | -1-√5/2 | -1+√5/2 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | orthogonal lifted from D5 |
ρ5 | 2 | 2 | 0 | 2 | 2 | 2 | 2 | 0 | -1+√5/2 | -1-√5/2 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | orthogonal lifted from D5 |
ρ6 | 2 | 2 | 0 | -1 | 2 | 2 | 2 | 0 | -1-√5/2 | -1+√5/2 | 0 | 0 | -1-√5/2 | -1+√5/2 | -ζ32ζ54+ζ32ζ5-ζ54 | -ζ3ζ54+ζ3ζ5-ζ54 | -ζ3ζ53+ζ3ζ52-ζ53 | ζ3ζ53-ζ3ζ52-ζ52 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | orthogonal lifted from D15 |
ρ7 | 2 | 2 | 0 | -1 | 2 | 2 | 2 | 0 | -1+√5/2 | -1-√5/2 | 0 | 0 | -1+√5/2 | -1-√5/2 | ζ3ζ53-ζ3ζ52-ζ52 | -ζ3ζ53+ζ3ζ52-ζ53 | -ζ32ζ54+ζ32ζ5-ζ54 | -ζ3ζ54+ζ3ζ5-ζ54 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | orthogonal lifted from D15 |
ρ8 | 2 | 2 | 0 | -1 | 2 | 2 | 2 | 0 | -1-√5/2 | -1+√5/2 | 0 | 0 | -1-√5/2 | -1+√5/2 | -ζ3ζ54+ζ3ζ5-ζ54 | -ζ32ζ54+ζ32ζ5-ζ54 | ζ3ζ53-ζ3ζ52-ζ52 | -ζ3ζ53+ζ3ζ52-ζ53 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | orthogonal lifted from D15 |
ρ9 | 2 | 2 | 0 | -1 | 2 | 2 | 2 | 0 | -1+√5/2 | -1-√5/2 | 0 | 0 | -1+√5/2 | -1-√5/2 | -ζ3ζ53+ζ3ζ52-ζ53 | ζ3ζ53-ζ3ζ52-ζ52 | -ζ3ζ54+ζ3ζ5-ζ54 | -ζ32ζ54+ζ32ζ5-ζ54 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | orthogonal lifted from D15 |
ρ10 | 3 | 3 | 1 | 0 | -1 | -1 | -1 | 1 | 3 | 3 | -1 | -1 | 3 | 3 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S4 |
ρ11 | 3 | 3 | -1 | 0 | -1 | -1 | -1 | -1 | 3 | 3 | 1 | 1 | 3 | 3 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S4 |
ρ12 | 3 | -1 | 1 | 0 | -1-2i | -1+2i | 1 | -1 | 3 | 3 | -i | i | -1 | -1 | 0 | 0 | 0 | 0 | 1 | -1-2i | -1+2i | 1 | 1 | 1 | -1-2i | -1+2i | complex lifted from C42⋊S3 |
ρ13 | 3 | -1 | 1 | 0 | -1+2i | -1-2i | 1 | -1 | 3 | 3 | i | -i | -1 | -1 | 0 | 0 | 0 | 0 | 1 | -1+2i | -1-2i | 1 | 1 | 1 | -1+2i | -1-2i | complex lifted from C42⋊S3 |
ρ14 | 3 | -1 | -1 | 0 | -1+2i | -1-2i | 1 | 1 | 3 | 3 | -i | i | -1 | -1 | 0 | 0 | 0 | 0 | 1 | -1+2i | -1-2i | 1 | 1 | 1 | -1+2i | -1-2i | complex lifted from C42⋊S3 |
ρ15 | 3 | -1 | -1 | 0 | -1-2i | -1+2i | 1 | 1 | 3 | 3 | i | -i | -1 | -1 | 0 | 0 | 0 | 0 | 1 | -1-2i | -1+2i | 1 | 1 | 1 | -1-2i | -1+2i | complex lifted from C42⋊S3 |
ρ16 | 6 | -2 | 0 | 0 | 2 | 2 | -2 | 0 | 6 | 6 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | -2 | 2 | 2 | -2 | -2 | -2 | 2 | 2 | orthogonal lifted from C42⋊S3 |
ρ17 | 6 | 6 | 0 | 0 | -2 | -2 | -2 | 0 | -3-3√5/2 | -3+3√5/2 | 0 | 0 | -3-3√5/2 | -3+3√5/2 | 0 | 0 | 0 | 0 | 1+√5/2 | 1+√5/2 | 1-√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | orthogonal lifted from C5⋊S4 |
ρ18 | 6 | 6 | 0 | 0 | -2 | -2 | -2 | 0 | -3+3√5/2 | -3-3√5/2 | 0 | 0 | -3+3√5/2 | -3-3√5/2 | 0 | 0 | 0 | 0 | 1-√5/2 | 1-√5/2 | 1+√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | orthogonal lifted from C5⋊S4 |
ρ19 | 6 | -2 | 0 | 0 | 2 | 2 | -2 | 0 | -3+3√5/2 | -3-3√5/2 | 0 | 0 | 1-√5/2 | 1+√5/2 | 0 | 0 | 0 | 0 | -2ζ43ζ54+2ζ43ζ5-ζ54-ζ5 | -1+√5/2 | -1-√5/2 | 2ζ43ζ54-2ζ43ζ5-ζ54-ζ5 | -2ζ4ζ53+2ζ4ζ52-ζ53-ζ52 | 2ζ4ζ53-2ζ4ζ52-ζ53-ζ52 | -1-√5/2 | -1+√5/2 | orthogonal faithful |
ρ20 | 6 | -2 | 0 | 0 | 2 | 2 | -2 | 0 | -3-3√5/2 | -3+3√5/2 | 0 | 0 | 1+√5/2 | 1-√5/2 | 0 | 0 | 0 | 0 | -2ζ4ζ53+2ζ4ζ52-ζ53-ζ52 | -1-√5/2 | -1+√5/2 | 2ζ4ζ53-2ζ4ζ52-ζ53-ζ52 | 2ζ43ζ54-2ζ43ζ5-ζ54-ζ5 | -2ζ43ζ54+2ζ43ζ5-ζ54-ζ5 | -1+√5/2 | -1-√5/2 | orthogonal faithful |
ρ21 | 6 | -2 | 0 | 0 | 2 | 2 | -2 | 0 | -3-3√5/2 | -3+3√5/2 | 0 | 0 | 1+√5/2 | 1-√5/2 | 0 | 0 | 0 | 0 | 2ζ4ζ53-2ζ4ζ52-ζ53-ζ52 | -1-√5/2 | -1+√5/2 | -2ζ4ζ53+2ζ4ζ52-ζ53-ζ52 | -2ζ43ζ54+2ζ43ζ5-ζ54-ζ5 | 2ζ43ζ54-2ζ43ζ5-ζ54-ζ5 | -1+√5/2 | -1-√5/2 | orthogonal faithful |
ρ22 | 6 | -2 | 0 | 0 | 2 | 2 | -2 | 0 | -3+3√5/2 | -3-3√5/2 | 0 | 0 | 1-√5/2 | 1+√5/2 | 0 | 0 | 0 | 0 | 2ζ43ζ54-2ζ43ζ5-ζ54-ζ5 | -1+√5/2 | -1-√5/2 | -2ζ43ζ54+2ζ43ζ5-ζ54-ζ5 | 2ζ4ζ53-2ζ4ζ52-ζ53-ζ52 | -2ζ4ζ53+2ζ4ζ52-ζ53-ζ52 | -1-√5/2 | -1+√5/2 | orthogonal faithful |
ρ23 | 6 | -2 | 0 | 0 | -2+4i | -2-4i | 2 | 0 | -3-3√5/2 | -3+3√5/2 | 0 | 0 | 1+√5/2 | 1-√5/2 | 0 | 0 | 0 | 0 | -1-√5/2 | 2ζ4ζ53+2ζ4ζ52-ζ53-ζ52 | 2ζ43ζ54+2ζ43ζ5-ζ54-ζ5 | -1-√5/2 | -1+√5/2 | -1+√5/2 | 2ζ4ζ54+2ζ4ζ5-ζ54-ζ5 | 2ζ43ζ53+2ζ43ζ52-ζ53-ζ52 | complex faithful |
ρ24 | 6 | -2 | 0 | 0 | -2-4i | -2+4i | 2 | 0 | -3-3√5/2 | -3+3√5/2 | 0 | 0 | 1+√5/2 | 1-√5/2 | 0 | 0 | 0 | 0 | -1-√5/2 | 2ζ43ζ53+2ζ43ζ52-ζ53-ζ52 | 2ζ4ζ54+2ζ4ζ5-ζ54-ζ5 | -1-√5/2 | -1+√5/2 | -1+√5/2 | 2ζ43ζ54+2ζ43ζ5-ζ54-ζ5 | 2ζ4ζ53+2ζ4ζ52-ζ53-ζ52 | complex faithful |
ρ25 | 6 | -2 | 0 | 0 | -2-4i | -2+4i | 2 | 0 | -3+3√5/2 | -3-3√5/2 | 0 | 0 | 1-√5/2 | 1+√5/2 | 0 | 0 | 0 | 0 | -1+√5/2 | 2ζ43ζ54+2ζ43ζ5-ζ54-ζ5 | 2ζ4ζ53+2ζ4ζ52-ζ53-ζ52 | -1+√5/2 | -1-√5/2 | -1-√5/2 | 2ζ43ζ53+2ζ43ζ52-ζ53-ζ52 | 2ζ4ζ54+2ζ4ζ5-ζ54-ζ5 | complex faithful |
ρ26 | 6 | -2 | 0 | 0 | -2+4i | -2-4i | 2 | 0 | -3+3√5/2 | -3-3√5/2 | 0 | 0 | 1-√5/2 | 1+√5/2 | 0 | 0 | 0 | 0 | -1+√5/2 | 2ζ4ζ54+2ζ4ζ5-ζ54-ζ5 | 2ζ43ζ53+2ζ43ζ52-ζ53-ζ52 | -1+√5/2 | -1-√5/2 | -1-√5/2 | 2ζ4ζ53+2ζ4ζ52-ζ53-ζ52 | 2ζ43ζ54+2ζ43ζ5-ζ54-ζ5 | complex faithful |
(1 22 60 42)(2 46)(3 24 47 44)(4 25 48 45)(5 49)(6 27 50 32)(7 28 51 33)(8 52)(9 30 53 35)(10 16 54 36)(11 55)(12 18 56 38)(13 19 57 39)(14 58)(15 21 59 41)(17 37)(20 40)(23 43)(26 31)(29 34)
(1 22 60 42)(2 23 46 43)(3 47)(4 25 48 45)(5 26 49 31)(6 50)(7 28 51 33)(8 29 52 34)(9 53)(10 16 54 36)(11 17 55 37)(12 56)(13 19 57 39)(14 20 58 40)(15 59)(18 38)(21 41)(24 44)(27 32)(30 35)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)
(1 59)(2 58)(3 57)(4 56)(5 55)(6 54)(7 53)(8 52)(9 51)(10 50)(11 49)(12 48)(13 47)(14 46)(15 60)(16 32)(17 31)(18 45)(19 44)(20 43)(21 42)(22 41)(23 40)(24 39)(25 38)(26 37)(27 36)(28 35)(29 34)(30 33)
G:=sub<Sym(60)| (1,22,60,42)(2,46)(3,24,47,44)(4,25,48,45)(5,49)(6,27,50,32)(7,28,51,33)(8,52)(9,30,53,35)(10,16,54,36)(11,55)(12,18,56,38)(13,19,57,39)(14,58)(15,21,59,41)(17,37)(20,40)(23,43)(26,31)(29,34), (1,22,60,42)(2,23,46,43)(3,47)(4,25,48,45)(5,26,49,31)(6,50)(7,28,51,33)(8,29,52,34)(9,53)(10,16,54,36)(11,17,55,37)(12,56)(13,19,57,39)(14,20,58,40)(15,59)(18,38)(21,41)(24,44)(27,32)(30,35), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60), (1,59)(2,58)(3,57)(4,56)(5,55)(6,54)(7,53)(8,52)(9,51)(10,50)(11,49)(12,48)(13,47)(14,46)(15,60)(16,32)(17,31)(18,45)(19,44)(20,43)(21,42)(22,41)(23,40)(24,39)(25,38)(26,37)(27,36)(28,35)(29,34)(30,33)>;
G:=Group( (1,22,60,42)(2,46)(3,24,47,44)(4,25,48,45)(5,49)(6,27,50,32)(7,28,51,33)(8,52)(9,30,53,35)(10,16,54,36)(11,55)(12,18,56,38)(13,19,57,39)(14,58)(15,21,59,41)(17,37)(20,40)(23,43)(26,31)(29,34), (1,22,60,42)(2,23,46,43)(3,47)(4,25,48,45)(5,26,49,31)(6,50)(7,28,51,33)(8,29,52,34)(9,53)(10,16,54,36)(11,17,55,37)(12,56)(13,19,57,39)(14,20,58,40)(15,59)(18,38)(21,41)(24,44)(27,32)(30,35), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60), (1,59)(2,58)(3,57)(4,56)(5,55)(6,54)(7,53)(8,52)(9,51)(10,50)(11,49)(12,48)(13,47)(14,46)(15,60)(16,32)(17,31)(18,45)(19,44)(20,43)(21,42)(22,41)(23,40)(24,39)(25,38)(26,37)(27,36)(28,35)(29,34)(30,33) );
G=PermutationGroup([[(1,22,60,42),(2,46),(3,24,47,44),(4,25,48,45),(5,49),(6,27,50,32),(7,28,51,33),(8,52),(9,30,53,35),(10,16,54,36),(11,55),(12,18,56,38),(13,19,57,39),(14,58),(15,21,59,41),(17,37),(20,40),(23,43),(26,31),(29,34)], [(1,22,60,42),(2,23,46,43),(3,47),(4,25,48,45),(5,26,49,31),(6,50),(7,28,51,33),(8,29,52,34),(9,53),(10,16,54,36),(11,17,55,37),(12,56),(13,19,57,39),(14,20,58,40),(15,59),(18,38),(21,41),(24,44),(27,32),(30,35)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15),(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)], [(1,59),(2,58),(3,57),(4,56),(5,55),(6,54),(7,53),(8,52),(9,51),(10,50),(11,49),(12,48),(13,47),(14,46),(15,60),(16,32),(17,31),(18,45),(19,44),(20,43),(21,42),(22,41),(23,40),(24,39),(25,38),(26,37),(27,36),(28,35),(29,34),(30,33)]])
Matrix representation of C42⋊D15 ►in GL5(𝔽241)
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 177 | 0 | 45 |
0 | 0 | 0 | 177 | 0 |
0 | 0 | 0 | 0 | 240 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 177 | 107 | 0 |
0 | 0 | 0 | 240 | 0 |
0 | 0 | 0 | 0 | 177 |
189 | 51 | 0 | 0 | 0 |
189 | 0 | 0 | 0 | 0 |
0 | 0 | 33 | 41 | 200 |
0 | 0 | 0 | 0 | 1 |
0 | 0 | 239 | 34 | 208 |
1 | 240 | 0 | 0 | 0 |
0 | 240 | 0 | 0 | 0 |
0 | 0 | 34 | 25 | 216 |
0 | 0 | 2 | 207 | 33 |
0 | 0 | 0 | 0 | 240 |
G:=sub<GL(5,GF(241))| [1,0,0,0,0,0,1,0,0,0,0,0,177,0,0,0,0,0,177,0,0,0,45,0,240],[1,0,0,0,0,0,1,0,0,0,0,0,177,0,0,0,0,107,240,0,0,0,0,0,177],[189,189,0,0,0,51,0,0,0,0,0,0,33,0,239,0,0,41,0,34,0,0,200,1,208],[1,0,0,0,0,240,240,0,0,0,0,0,34,2,0,0,0,25,207,0,0,0,216,33,240] >;
C42⋊D15 in GAP, Magma, Sage, TeX
C_4^2\rtimes D_{15}
% in TeX
G:=Group("C4^2:D15");
// GroupNames label
G:=SmallGroup(480,258);
// by ID
G=gap.SmallGroup(480,258);
# by ID
G:=PCGroup([7,-2,-3,-5,-2,2,-2,2,57,506,1683,850,360,1054,5786,102,15125,5052,8833]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^4=c^15=d^2=1,a*b=b*a,c*a*c^-1=d*b*d=a^-1*b^-1,a*d=d*a,c*b*c^-1=a,d*c*d=c^-1>;
// generators/relations
Export
Subgroup lattice of C42⋊D15 in TeX
Character table of C42⋊D15 in TeX