Copied to
clipboard

G = C42⋊D15order 480 = 25·3·5

The semidirect product of C42 and D15 acting via D15/C5=S3

non-abelian, soluble, monomial

Aliases: C42⋊D15, C5⋊(C42⋊S3), (C4×C20)⋊1S3, C42⋊C32D5, C22.(C5⋊S4), (C2×C10).2S4, (C5×C42⋊C3)⋊4C2, SmallGroup(480,258)

Series: Derived Chief Lower central Upper central

C1C42C5×C42⋊C3 — C42⋊D15
C1C22C42C4×C20C5×C42⋊C3 — C42⋊D15
C5×C42⋊C3 — C42⋊D15
C1

Generators and relations for C42⋊D15
 G = < a,b,c,d | a4=b4=c15=d2=1, ab=ba, cac-1=dbd=a-1b-1, ad=da, cbc-1=a, dcd=c-1 >

3C2
60C2
16C3
3C4
3C4
30C4
30C22
80S3
3C10
12D5
16C15
3C2×C4
15Q8
15D4
30C8
30D4
30C2×C4
4A4
3C20
3C20
6D10
6Dic5
16D15
15M4(2)
15C4○D4
20S4
3C2×C20
3D20
3Dic10
6C52C8
6C4×D5
6C5⋊D4
4C5×A4
15C4≀C2
3C4.Dic5
3C4○D20
4C5⋊S4
5C42⋊S3
3D204C4

Character table of C42⋊D15

 class 12A2B34A4B4C4D5A5B8A8B10A10B15A15B15C15D20A20B20C20D20E20F20G20H
 size 13603233660226060663232323266666666
ρ111111111111111111111111111    trivial
ρ211-11111-111-1-111111111111111    linear of order 2
ρ3220-12220220022-1-1-1-122222222    orthogonal lifted from S3
ρ422022220-1-5/2-1+5/200-1-5/2-1+5/2-1+5/2-1+5/2-1-5/2-1-5/2-1-5/2-1-5/2-1+5/2-1-5/2-1+5/2-1+5/2-1+5/2-1-5/2    orthogonal lifted from D5
ρ522022220-1+5/2-1-5/200-1+5/2-1-5/2-1-5/2-1-5/2-1+5/2-1+5/2-1+5/2-1+5/2-1-5/2-1+5/2-1-5/2-1-5/2-1-5/2-1+5/2    orthogonal lifted from D5
ρ6220-12220-1-5/2-1+5/200-1-5/2-1+5/232ζ5432ζ5543ζ543ζ5543ζ533ζ5253ζ3ζ533ζ5252-1-5/2-1-5/2-1+5/2-1-5/2-1+5/2-1+5/2-1+5/2-1-5/2    orthogonal lifted from D15
ρ7220-12220-1+5/2-1-5/200-1+5/2-1-5/2ζ3ζ533ζ52523ζ533ζ525332ζ5432ζ5543ζ543ζ554-1+5/2-1+5/2-1-5/2-1+5/2-1-5/2-1-5/2-1-5/2-1+5/2    orthogonal lifted from D15
ρ8220-12220-1-5/2-1+5/200-1-5/2-1+5/23ζ543ζ55432ζ5432ζ554ζ3ζ533ζ52523ζ533ζ5253-1-5/2-1-5/2-1+5/2-1-5/2-1+5/2-1+5/2-1+5/2-1-5/2    orthogonal lifted from D15
ρ9220-12220-1+5/2-1-5/200-1+5/2-1-5/23ζ533ζ5253ζ3ζ533ζ52523ζ543ζ55432ζ5432ζ554-1+5/2-1+5/2-1-5/2-1+5/2-1-5/2-1-5/2-1-5/2-1+5/2    orthogonal lifted from D15
ρ103310-1-1-1133-1-1330000-1-1-1-1-1-1-1-1    orthogonal lifted from S4
ρ1133-10-1-1-1-13311330000-1-1-1-1-1-1-1-1    orthogonal lifted from S4
ρ123-110-1-2i-1+2i1-133-ii-1-100001-1-2i-1+2i111-1-2i-1+2i    complex lifted from C42⋊S3
ρ133-110-1+2i-1-2i1-133i-i-1-100001-1+2i-1-2i111-1+2i-1-2i    complex lifted from C42⋊S3
ρ143-1-10-1+2i-1-2i1133-ii-1-100001-1+2i-1-2i111-1+2i-1-2i    complex lifted from C42⋊S3
ρ153-1-10-1-2i-1+2i1133i-i-1-100001-1-2i-1+2i111-1-2i-1+2i    complex lifted from C42⋊S3
ρ166-20022-206600-2-20000-222-2-2-222    orthogonal lifted from C42⋊S3
ρ176600-2-2-20-3-35/2-3+35/200-3-35/2-3+35/200001+5/21+5/21-5/21+5/21-5/21-5/21-5/21+5/2    orthogonal lifted from C5⋊S4
ρ186600-2-2-20-3+35/2-3-35/200-3+35/2-3-35/200001-5/21-5/21+5/21-5/21+5/21+5/21+5/21-5/2    orthogonal lifted from C5⋊S4
ρ196-20022-20-3+35/2-3-35/2001-5/21+5/20000-2ζ43ζ54+2ζ43ζ5545-1+5/2-1-5/243ζ54-2ζ43ζ5545-2ζ4ζ53+2ζ4ζ5253524ζ53-2ζ4ζ525352-1-5/2-1+5/2    orthogonal faithful
ρ206-20022-20-3-35/2-3+35/2001+5/21-5/20000-2ζ4ζ53+2ζ4ζ525352-1-5/2-1+5/24ζ53-2ζ4ζ52535243ζ54-2ζ43ζ5545-2ζ43ζ54+2ζ43ζ5545-1+5/2-1-5/2    orthogonal faithful
ρ216-20022-20-3-35/2-3+35/2001+5/21-5/200004ζ53-2ζ4ζ525352-1-5/2-1+5/2-2ζ4ζ53+2ζ4ζ525352-2ζ43ζ54+2ζ43ζ554543ζ54-2ζ43ζ5545-1+5/2-1-5/2    orthogonal faithful
ρ226-20022-20-3+35/2-3-35/2001-5/21+5/2000043ζ54-2ζ43ζ5545-1+5/2-1-5/2-2ζ43ζ54+2ζ43ζ55454ζ53-2ζ4ζ525352-2ζ4ζ53+2ζ4ζ525352-1-5/2-1+5/2    orthogonal faithful
ρ236-200-2+4i-2-4i20-3-35/2-3+35/2001+5/21-5/20000-1-5/24ζ53+2ζ4ζ52535243ζ54+2ζ43ζ5545-1-5/2-1+5/2-1+5/24ζ54+2ζ4ζ554543ζ53+2ζ43ζ525352    complex faithful
ρ246-200-2-4i-2+4i20-3-35/2-3+35/2001+5/21-5/20000-1-5/243ζ53+2ζ43ζ5253524ζ54+2ζ4ζ5545-1-5/2-1+5/2-1+5/243ζ54+2ζ43ζ55454ζ53+2ζ4ζ525352    complex faithful
ρ256-200-2-4i-2+4i20-3+35/2-3-35/2001-5/21+5/20000-1+5/243ζ54+2ζ43ζ55454ζ53+2ζ4ζ525352-1+5/2-1-5/2-1-5/243ζ53+2ζ43ζ5253524ζ54+2ζ4ζ5545    complex faithful
ρ266-200-2+4i-2-4i20-3+35/2-3-35/2001-5/21+5/20000-1+5/24ζ54+2ζ4ζ554543ζ53+2ζ43ζ525352-1+5/2-1-5/2-1-5/24ζ53+2ζ4ζ52535243ζ54+2ζ43ζ5545    complex faithful

Smallest permutation representation of C42⋊D15
On 60 points
Generators in S60
(1 22 60 42)(2 46)(3 24 47 44)(4 25 48 45)(5 49)(6 27 50 32)(7 28 51 33)(8 52)(9 30 53 35)(10 16 54 36)(11 55)(12 18 56 38)(13 19 57 39)(14 58)(15 21 59 41)(17 37)(20 40)(23 43)(26 31)(29 34)
(1 22 60 42)(2 23 46 43)(3 47)(4 25 48 45)(5 26 49 31)(6 50)(7 28 51 33)(8 29 52 34)(9 53)(10 16 54 36)(11 17 55 37)(12 56)(13 19 57 39)(14 20 58 40)(15 59)(18 38)(21 41)(24 44)(27 32)(30 35)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)
(1 59)(2 58)(3 57)(4 56)(5 55)(6 54)(7 53)(8 52)(9 51)(10 50)(11 49)(12 48)(13 47)(14 46)(15 60)(16 32)(17 31)(18 45)(19 44)(20 43)(21 42)(22 41)(23 40)(24 39)(25 38)(26 37)(27 36)(28 35)(29 34)(30 33)

G:=sub<Sym(60)| (1,22,60,42)(2,46)(3,24,47,44)(4,25,48,45)(5,49)(6,27,50,32)(7,28,51,33)(8,52)(9,30,53,35)(10,16,54,36)(11,55)(12,18,56,38)(13,19,57,39)(14,58)(15,21,59,41)(17,37)(20,40)(23,43)(26,31)(29,34), (1,22,60,42)(2,23,46,43)(3,47)(4,25,48,45)(5,26,49,31)(6,50)(7,28,51,33)(8,29,52,34)(9,53)(10,16,54,36)(11,17,55,37)(12,56)(13,19,57,39)(14,20,58,40)(15,59)(18,38)(21,41)(24,44)(27,32)(30,35), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60), (1,59)(2,58)(3,57)(4,56)(5,55)(6,54)(7,53)(8,52)(9,51)(10,50)(11,49)(12,48)(13,47)(14,46)(15,60)(16,32)(17,31)(18,45)(19,44)(20,43)(21,42)(22,41)(23,40)(24,39)(25,38)(26,37)(27,36)(28,35)(29,34)(30,33)>;

G:=Group( (1,22,60,42)(2,46)(3,24,47,44)(4,25,48,45)(5,49)(6,27,50,32)(7,28,51,33)(8,52)(9,30,53,35)(10,16,54,36)(11,55)(12,18,56,38)(13,19,57,39)(14,58)(15,21,59,41)(17,37)(20,40)(23,43)(26,31)(29,34), (1,22,60,42)(2,23,46,43)(3,47)(4,25,48,45)(5,26,49,31)(6,50)(7,28,51,33)(8,29,52,34)(9,53)(10,16,54,36)(11,17,55,37)(12,56)(13,19,57,39)(14,20,58,40)(15,59)(18,38)(21,41)(24,44)(27,32)(30,35), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60), (1,59)(2,58)(3,57)(4,56)(5,55)(6,54)(7,53)(8,52)(9,51)(10,50)(11,49)(12,48)(13,47)(14,46)(15,60)(16,32)(17,31)(18,45)(19,44)(20,43)(21,42)(22,41)(23,40)(24,39)(25,38)(26,37)(27,36)(28,35)(29,34)(30,33) );

G=PermutationGroup([[(1,22,60,42),(2,46),(3,24,47,44),(4,25,48,45),(5,49),(6,27,50,32),(7,28,51,33),(8,52),(9,30,53,35),(10,16,54,36),(11,55),(12,18,56,38),(13,19,57,39),(14,58),(15,21,59,41),(17,37),(20,40),(23,43),(26,31),(29,34)], [(1,22,60,42),(2,23,46,43),(3,47),(4,25,48,45),(5,26,49,31),(6,50),(7,28,51,33),(8,29,52,34),(9,53),(10,16,54,36),(11,17,55,37),(12,56),(13,19,57,39),(14,20,58,40),(15,59),(18,38),(21,41),(24,44),(27,32),(30,35)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15),(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)], [(1,59),(2,58),(3,57),(4,56),(5,55),(6,54),(7,53),(8,52),(9,51),(10,50),(11,49),(12,48),(13,47),(14,46),(15,60),(16,32),(17,31),(18,45),(19,44),(20,43),(21,42),(22,41),(23,40),(24,39),(25,38),(26,37),(27,36),(28,35),(29,34),(30,33)]])

Matrix representation of C42⋊D15 in GL5(𝔽241)

10000
01000
00177045
0001770
0000240
,
10000
01000
001771070
0002400
0000177
,
18951000
1890000
003341200
00001
0023934208
,
1240000
0240000
003425216
00220733
0000240

G:=sub<GL(5,GF(241))| [1,0,0,0,0,0,1,0,0,0,0,0,177,0,0,0,0,0,177,0,0,0,45,0,240],[1,0,0,0,0,0,1,0,0,0,0,0,177,0,0,0,0,107,240,0,0,0,0,0,177],[189,189,0,0,0,51,0,0,0,0,0,0,33,0,239,0,0,41,0,34,0,0,200,1,208],[1,0,0,0,0,240,240,0,0,0,0,0,34,2,0,0,0,25,207,0,0,0,216,33,240] >;

C42⋊D15 in GAP, Magma, Sage, TeX

C_4^2\rtimes D_{15}
% in TeX

G:=Group("C4^2:D15");
// GroupNames label

G:=SmallGroup(480,258);
// by ID

G=gap.SmallGroup(480,258);
# by ID

G:=PCGroup([7,-2,-3,-5,-2,2,-2,2,57,506,1683,850,360,1054,5786,102,15125,5052,8833]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^15=d^2=1,a*b=b*a,c*a*c^-1=d*b*d=a^-1*b^-1,a*d=d*a,c*b*c^-1=a,d*c*d=c^-1>;
// generators/relations

Export

Subgroup lattice of C42⋊D15 in TeX
Character table of C42⋊D15 in TeX

׿
×
𝔽